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1. INTRODUCTION

Many globular proteins share internal cavities as a common structural feature [1,2].
Often these cavities are large enough to accommodate one or several water molecules.
Crystal structure determinations show positions of well-ordered “structural” water mole-
cules, but they usunally fail to detect disordered or mobile ones [3,4]. Hence many protein
cavities appear to be void of solvent. Nuclear magnetic resonance (NMR) experiments
sometimes indicate additional. more mobile, water molecules in protein cavities [3], and
certain NMR techniques even provide estimates of their number, orientational disorder,
and residence times [5.6]. On the other hand. NMR experiments lack the atomistic detail
of crystal structure determinations. In view of the anticipated importance of internal wa-
ter for protein stability [2]. ligand binding [7]. and enzyme catalysis [8.9], a more detailed
knowledge of both structural and mobile solvent in protein cavities would certainly be
desirable. Molecular dynamics (MD) simulations may contribute some of this informa-
tion, as they provide a detailed and dynamic atomistic picture of a protein in its aqueous
environment. The analysis of the MD trajectories obviously requires a suitable procedure
to distinguish between internal and external solvent. Once such a classiflication is made,
one may concentrate on analyzing water molecules found to be internal.

A number of methods have been developed in the past to identify interior cavities by
analyzing the protein geometry or topology rather than monitoring ligands or solvent in
the protein interior. Many of them are based on the concept of solvent-accessible [10] or
molecular contact surfaces [11] which are obtained by spherical probes rolling over the
molecule [12]. Cai el al. suggest to approximate Connolly’s analytical description [12] by
a triangular mesh built around the embracing cllipsoid which is iteratively deflated until
it touches the original surface [13]. Alpha-shape theory [14] and related methods [15]
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FIGURE 1. Illustration (in 2D) of various methods used to define
molecular surfaces and to identify cavities. The lower row demonstrates
the approach presented here.,

also represent a molecule by van der Waals spheres, but they do not depend on auxiliary
rolling probes. Instead they use Delaunay tessellations [16] of the molecule and distinguish
between fully and partially occupied tetrahedra to identify both surface pockets [17] and
interior cavities [18]. Alard and Wodak present a method to detect cavities by analyzing
surfaces built from sets of interpenetrating spheres [19]. Procedures that first map the
protein structure onto a grid and then use simple distance information between protein
atoms and grid points to detect cavities have been proposed by Voorintholt et. al. [20]
and by Levitt and Banaszak [21]. A modification using pattern recognition techniques
and cellular logic operations has been proposed by Delaney [22]. While many of these
approaches (see Fig. 1), and Connolly’s algorithm in particular, have found wide-spread
use in computer-graphics and related applications, they are of only limited use in the
present context. It a protein contains an orifice or a channel connecting the interior
cavity with the outside, most of the aforementioned approaches would - depending on
input parameters like probe radii or grid sizes - capture these features as well. In the
absence of a closed surface it appears impossible to unequivocally discriminate between
‘interior” and ‘exterior’.

In this paper we present a simple method to generate a closed surface which embraces
a set of predefined atoms. The central idea is to construct a polyhedron whose ver-
tices represent the set of chosen atoms and to find all solvent molecules enclosed by the

polyhedron. The proposed procedure entails five steps (see Fig. 2):
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IFIGURE 2. Illustration of the procedure to triangulate the protein
surface. A color version can be found on the front cover of the 2001 C4 report
book.

(1) Choice of a set of protein atoms which define the boundaries of the protein interior,
the protein cavity, or more generally the protein region of interest.
2) Projection of this set of atoms onto a sphere around their geometrical center.

(2)

(3) Triangulation of the spherical surface.

(4) Back transformation to the original coordinate system.
(5)

5) Identification of solvent molecules inside the so-generated polyhedron.

This procedure is applied to 5 ns long MD trajectories of apo- and holo- fatty acid binding
protein (FABP, see Fig. 2). The g-barrel type structure of FABP encompasses a large
solvent-filled cavity, and only some of the internal water is expelled upon introduction of
the palmitate ligand. In this report we concentrate on structural and dynamical aspects
of internal water and on differences between the apo and holo forms of the protein. In
particular, we focus on water densities, coordination, and interaction, and also discuss
pathways of exchange with the bulk. A more comprehensive analysis may be found
elsewhere. [23,24]

Although the procedure proposed here has been developed to analyze solvent in the
interior cavity of FABP, it should be useful for applications to other proteins as well.
This includes all members of the lipid binding protein family [25] as well as some other
transport proteins [26] which show a large solvent-filled cavity as a common feature.



Another example from the recent literature is the KesA potassium channel which con-
tains polarizable water believed to facilitate passage of ions through the low dielectric

membrane [27,28].

2. METHODS

The objective is to find a simple description of a bounding surface for the protein
interior. A well-defined volume is enclosed by this surface, and any solvent molecule
contained in this volume is considered to be in the protein interior. Given a set of protein
atoms as vertices, one obvious way to find a bounding surface is to form triangles from
these vertices and to assemble them as faces of a polyhedron. Chemical knowledge may
assist in a proper choice of vertices, and different choices may be used to identify various
portions of the protein. Simple protein shapes such as the 3-barrel of FABP can simply
be represented by their backbone geometries, and the entire set of C, atoms appears to
be a reasonable choice.

Surface triangulation is a well-known subject in computational geometry, and Delau-
nay triangulation is the method of choice for two-dimensional problems [16]. Delaunay
triangulation and its dual structure, the Voronoi diagram, are solutions to an important
kind of nearest neighbor problem in geometry. Let A = {a;, -+, a,} be a set of sites in
the two-dimensional plane. Then the Voronoi diagram is composed of polygons around
each site a; € A enclosing the area of all points closer to a; than to any other site a;
(j # i). The set of points with two or more nearest sites a;, a;, - -+ form the edges and
vertices of Voronoi polygons. As the dual of Voronoi diagrams, Delaunay triangulation
connects by lines any two sites @, and a; which border a common edge in the Voronoi
representation.

Delaunay triangulation is well-suited for two-dimensional problems, but application
to three-dimensional surfaces appears less straight-forward. Increasing dimensionality
involves tessellation of three-dimensional space and affords tetrahedra rather than trian-
gles. The bounding surface of the generated Delaunay complex is a convex hull enclosing
all given vertices [16]. This might be used for our purposes, but vertices (protein atoms)
hidden by the surface would then be discarded (sce also Fig. 1). In applications to protein
structure, concave crevices on the protein exterior would be counted inside. and the num-
ber of protein atoms defining the surface would be allowed to change as function of time.
It is clear that there is no a priori definition of a surface containing all given vertices,
and the difficulty apparently lies in finding a suitable definition prior to triangulation.
We propose to use the analytical description of a simple surface which approximates the
shape of the protein reasonably well and to project the set of chosen vertices onto this

auxiliary surface. Spherical surfaces are reasonable approximations to all convex shapes
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including the (-barrel of FABP. Hence for the purpose of this study, we choose to project
main chain atoms onto a sphere, then perform the triangulation, back-transform the tri-
angulated surface to the original coordinate frame, and finally identify water molecules
inside the polyhedron bounded by this surface. The center of the sphere is always chosen
as the center of the selected protein atoms. Figure 2 illustrates the outlined sequence of
steps.

Reflecting the importance for computational geometry, there are a large number of
algorithms available to perform Delaunay triangulation on planar surfaces [16,29]. Simple
algorithms show O (NV{}) scaling with the number of sites or vertices (Ny ), and much effort
has been invested to improve this scaling behavior. Advanced techniques, based on the
divide and conquer paradigm, for example, achieve a scaling as low as O(Ny log Ny ).
The computational efficiency comes at the expense of increased algorithmic complexity,
however. On the other hand, the set of vertices used to represent the protein surface is
quite limited, such that computational effort affords no unsurmountable burden. Hence
we prefer to use a simple algorithm which can easily be applied to spherical surfaces,
accepting for the moment its unfavorable scaling behavior. Later it will be seen that
specific properties of spherical triangulations may be used for significant improvements

which render the computer program being executed in trivial amounts of computer time.

2.1. Triangulation procedure: implementation A. There is one property of Delau-
nay triangles which lends itself to simple implementations both for planar and spherical
surfaces: Three sites (vertices) form a Delaunay triangle if and only if no other site is

for each vertex (a,) do
for each vertex EaJJ do l\
if not shared (a‘,a:J then
for each vertex (a,) do
flag := true
if not (shared(ai,ak) or shared(aj,akj) then
1 == 0
repeat
increment 1
if (a;) in circumcircle of (a,, a,, a,) then
flag := false
endif
until ( (not flag) or (1=N,) )
if (flag) then
add (a,, a; a) to list of triangles
endif
endif
end for
endif
end for
end for

FIGURE 3. Core of the triangulation algorithm: implementation A.
The chart has been simplified for clarity and assumes that i # j # k # [. The
value of shared(a;,a;) is true if the edge (a;,a;) is shared by two triangles
already recorded and false otherwise.
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FIGURE 4. Delaunay triangulation on spherical surfaces. Based on the
circumcircle criterion, the left panel shows a valid triangle (aq,a2,a3) and the
right panel shows an invalid triangle (aq4,a5,a4). See text for details.

contained in their circumecircle [16]. The algorithmic realization is immediately evident
(see Fig. 3): For every triple of sites (a;, a;, a;) compute the center ¢;;; and radius ;%
of the circumcircle and check if the distance between any other site a; and ¢;;;, is smaller
than 7;;%. If there is no such site a;, then (a;, a;, ai) is a Delaunay triangle. On spherical
surfaces, three sites form a triangle if no other site is contained in the sphere segment
lined by their circumeircle. The distance check is replaced by a comparison of the angle
ok = £ (cyr, Cya;) = £L(ciji, C, a5) = £ (cik, C, ax) with all angles oy = £ (¢, C, )
where C' denotes the center of the sphere and [ # i # j # k (see Fig. 4).

The algorithm outlined above obviously scales as O (N}}) with the number of vertices:
It contains three nested loops considering all triples of vertices (a;, a;, a;) which may
potentially form triangles. A fourth loop runs over all remaining vertices, but finishes
as soon as a vertex is found inside the circumcircle of (a;, a;, ar). The computational
effort is somewhat reduced by skipping edges which have already been identified in two

triangles.

2.2. Improvements: implementations B and C. We shall refer to the above pro-

cedure as implementation A (Fig. 3) and introduce two major improvements which

enhance computational efficiency significantly. First, knowledge about the total number

of triangles permits early termination of the triangulation scheme (implementation B).
Second, Delaunay triangulation is a local property by construction, allowing to restrict

circumecircle tests to near neighbors (implementation C).
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generate initial edge (a, a,)
initialize stack with edge (a,, a,) B,C
initialize N,
while (N, < 2N,-4)
retrieve edge (a,,a,) from stack
if not shared (a,, a,} then
k := 0 )
repeat
increment k
flag := falsge
if not (shared (a,,a,) or shared (a,a,)) then
flag := true '
b G [}
repeat
increment 1
if ta;) in circumcircle of (a,,a;,a,) then
flag := false
endif
until { {(not flag) or (1=N,) )
if (flag) then
add (ax,aj,ak) to list of triangles
increment N,
if not shared (a,, a,) put (a,a,) on stack
if not shared la,,a,) put (a; a) on stack
if (N, = 1) put Eal,ajl on stack
endif
endif
until (flag)
endif
end while

FiGurE 5. Core of the triangulation algorithm: implementations B
and C. See also caption of Fig. 3. The stack not only records Delaunay edges
(ai,a;) but also the corresponding vertices they form triangles with to prevent
double-counting of triangles. The initial edge is determined either from a given
vertex and its nearest neighbor (implementation B) or within the large loop
(implementation C). Finally, implementation C limits the inner two loops to
near neighbors of a;. See text for further details.

FIGURE 6. Delaunay triangulation, implementations B and C. Using
the same example as in Figure 4, the graph illustrates how the algorithm walks
through the triangulation. After identifying a new triangle, it proceeds with one
of the newly found edges knowing that it must be shared by another triangle.

Euler’s formula [30] relates the number of vertices (Ny ), edges (Ny), and faces (Np).

It is valid for any polyhedron of sphere topology:

, Ny + Np = Ng +2
3



The number of vertices is known and simply equals the number of selected protein atoms.
By construction, all polygonal faces of the polyhedron are triangles, hence every face is
surrounded by exactly three edges, and every edge is shared by exactly two faces:

Combining equations (1) and (2) yields the total number of triangles:
(3) Np — QNV —4

Triangulation can thus be terminated as soon as the pre-calculated number of triangles has
been generated. By itself this measure would only reduce the number of circumcircle tests
but not affect the time complexity of the algorithm. However, the additional knowledge
that every edge is shared by exactly two triangles can not only be used as auxiliary check,
it may also be implemented as a guide to proceed in the triangulation. Implementation
B thus replaces the outer two loops by a single loop over all edges known to belong to
one more triangle (Figs. 5, 6). A stack implemented for this purpose records edges of
triangles generated so far. Then, one edge (a;, a;) is retrieved from stack, and the loops
over k and [ are executed until a new triangle (a;, a;, a;) is identified. At this point,
edges (a;, ax) and (a;, a;) are pushed onto the stack. The procedure terminates as soon
as the known number of triangles has been generated. An alternative (and equivalent)
termination condition would be an empty stack. Note that by construction a second
triangle for a given edge may have been found before it is retrieved from stack (e.g. edge
(ay,a7) in Fig. 6). The algorithm checks for this case (line 6 of Fig. 5) and determines
whether it should continue or retrieve the next edge. Additional checks are optional but
help to avoid unnecessary circumcircle tests (line 11) and to limit the size of the stack
(lines 23, 24). Implementation B requires Ng full cycles through the outer loop and up
to Ny cycles through each of the inner loops, resulting in O (N{) scaling for the worst
case scenario. An initial edge is required as seed for the triangulation. This can easily be
obtained from an arbitrary vertex a, and its nearest neighbor a;, since nearest neighbors
are known to form edges of Delaunay triangles [16]. Obviously this initial step is carried
out in O (Ny) time.

Realizing that vertices close in space are the most likely to form triangles, we may
additionally reduce the number of required circumcircle tests by using presorted lists of
vertices. The innermost loop only needs to consider vertices a; whose distance to a; (or a;,
ay) is smaller than the diameter (2r;;x) of the circumcircle of (a;, a;, ax). No other vertex
can possibly be inside the circumcircle. Valid Delaunay triangles and their circumcircles
are typically small, hence identification will only require very few cycles provided that the
loop index [ runs through a list of vertices sorted for distance with ;. On the other hand,
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the majority of vertex triples contain other vertices inside their circumeircles, and most
of these circles are quite large. However, only one vertex inside the circumcircle needs
to be identified, and vertices close to a; are the most likely candidates, again limiting
the number of necessary cycles through the innermost loop. Similar considerations apply
to the loop with index k: Vertices a; close to a; (or a;) are the most likely to form
triangles with (a;,a;). Exactly one triangle needs to be identified, and only very few
cycles through this loop are required, if the list of vertices ay, is sorted for distance with
a;. Delaunay triangulation is thus effectively treated as a local property. In the ideal
case, the number of cycles (per edge (a;.a;)) through loops k and [ will not depend on the
number of vertices, but only on how homogeneously these vertices are distributed. Taking
into account a total of Np cycles through the outer loop, we thus expect (near) linear
scaling, O (Ny), for implementation C. One remaining problem is to generate a sorted
list of vertices. The calculation of the distance matrix can only be carried out in O (NZ)
time, the subsequent sorting requires at least O (N - logNy) steps. Initial tests have
shown that even with very efficient non-recursive implementations of Quicksort [31] the
sorting becomes the dominant part of the calculation as Ny exceeds ~500. Fortunately,
however, it is not really necessary to compute and sort the entire distance matrix. It will
be sufficient for every vertex to know all its nearest neighbors within a certain distance
Tmaz- Lhis information may be obtained with grid-cell based techniques such as those
suggested by Quentrec and Brot [32] and by Hockney et al. [33] in the context of molecular
dynamics simulations. Using these techniques we achieve near linear scaling for the full

triangulation procedure (see Table 1).

tepu/ s for implementation

Sample Ny A B C
apo-FABP 131 0.7 0.1 0.01
Random distribution 1600 1062.0 6.1 0.19
Random distribution 6400 74096.2 109.8 0.91
Particle insertion 1600  1054.3 6.0 0.19
Particle insertion 6400 70581.3 105.9 0.87

TABLE 1. Computational Aspects of Delaunay Triangulation. The cho-
sen samples for triangulation include the C\, skeleton of apo-FABP as well as
sets of Ny particles placed on a sphere cither randomly or by particle insertion.
Random distributions are intentionally biased towards polar regions by choosing
each pair of sphere angles (6, ¢) with equal probability. The particle insertion
technique yields a much more homogeneous distribution because it chooses every
position on the sphere with cqual likelihood. CPU times have been measured on
one processor of a Pentium II1/500 Xeon server.



In summary, implementation C establishes a very efficient variant of a simple Delaunay
triangulation algorithm which can easily be applied to long MD trajectories. Differences
in efficiency between particle distributions of varying homogeneity are noticeable but not

excessive.

2.3. Identification of interior water. Once the triangulation is known, simple geom-
etry is used to decide whether a solvent molecule or, more generally, a particular point P
is located in the interior of the generated polyhedron. The choice of a sphere as auxiliary
surface for triangulation entails that every face of the polyhedron is visible from its center
and not hidden by other faces. Consequently, the ray originating in center C' and passing
through P will pass through one (and only one) triangular face Fj;=(a;, a;, ax) of the
polyhedron (see Fig. 2). Solving the system of linear equations,

() TP 30, + 7,08, + 0o

for coeflicients ~;, «;, and v, will tell if the ray from C' through P passes through tri-
angle Fiji (vi > 0, 79 > 0, v > 0), and, if so, if P is located inside the polyhedron
(vit+7j+7,<1), on the surface (vy;47;+y=1), or outside (y;+7y;+7:>1). In the numeri-
cally unlikely case that any of v;, v;, 7 equal zero, the ray from C' to P passes through
an edge or vertex of the polyhedron.

Preferred pathways of exchange may be identified by recording and clustering surface
triangles involved in water exchange. This procedure will be referred to as portal cluster
analysis and it may be outlined as follows: Whenever a water molecule changes its state
(from internal to external or vice versa), the surface triangle closest in space is recorded.
If this triangle shares a vertex with one already recorded triangle, both are registered in
the same cluster. If it shares vertices with triangles in two or three different clusters,
all these clusters are combined, and the triangle is registered with this new cluster. If
none of its vertices are shared by any of the previously recorded triangles, the triangle
is registered with a new cluster. After processing the entire trajectory, there are N, sier
different clusters which represent N, ., distinct regions of the protein (orifices) involved

in water exchange.

3. APPLICATION TO MD TRAJECTORIES OF apo- AND holo-FABP

We have applied the procedure outlined above to identify water molecules in the in-
terior of apo- and holo-FABP and to capture pathways of exchange with the bulk. Two
molecular dynamics simulations of 5 ns length were carried out for FABP in apo-form
and with bound palmitate. The simulations were started from crystal structures of the
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protein which were inserted in large boxes containing equilibrium configurations of wa-
ter molecules. Truncated octahedron periodic boundary conditions were applied. Since
protein atoms and water molecules leaving the central box on one side were replaced by
their periodic images on the opposite side, coordinates needed to be prepared prior to
analysis. For every time frame, the protein chain was restored, and the minimum image
convention was applied for water molecules with respect to the protein center of mass.
Triangulation was then performed for all 131 C, atoms, capturing water molecules inside

the J-barrel of the protein.

3.1. Water inside the protein. The simulations show a total of 25 and 7 water mole-
cules, respectively, which never leave the J-barrel of the protein. These numbers compare
reasonably well with the number of well-ordered internal water molecules identified in the
crystal structures of the two forms of the protein. Depending on the exact distinction
between interior and exterior, experimental numbers vary between 23-24 and 7-9. respec-
tively [6,34 36]. Many water molecules exchange between the protein interior and the
bulk and are thus unlikely to be detected in crystal structure experiments. On average,
therc are 8 and 14 additional water molecules, respectively, which are detected in the

protein interior for some period of the MD simulation.

3.2. Water exchange pathways. Portal cluster analysis (see above) identifies several
pathways of exchange with the bulk (see Table 2, Fig. 7). The most prominent orifices
discussed in the experimental literature [36] are found. These include the gap G in the
f-barrel and the portal near the helices. The portal appears to be composed of three
separate areas which are denoted P; (left), P (center), and P;; (right) and are shown in
Figure 7. Another site of exchange has been identified on the opposite side of the protein
barrel and will be referred to as the backside portal (B). This orifice has not found as
much attention in the experimental literature, but clearly shows up in the MD simulations
as an additional site of exchange. There are a number of interesting differences observed

between apo- and holo-FABP:

e holo-FABP shows a higher rate of exchange than apo-FABP. This is counter-
intuitive given the reduced gap width (see above) and the smaller number of
water molecules inside the cavity.

e holo-FABP shows a neutral balance of entry and exit events. There is a net gain
of 2 water molecules by exchange through the portal region P;; and the gap and
a net loss of 2 water molecules by exchange through the portal region P; and
the backside portal. apo-FABP, however, loses 9 water molecules by expulsion
through the portal region P; (-4), the gap (-3), and the backside portal (-2). This



apo-FABP holo-FABP

FIGURE 7. Water exchange pathways. Different shades of gray indicate
different orifices (P, Py, P;; .B . G) identified by portal cluster analysis.

Orifice Contributing Residues Nenter  Nieave

apo-FABP P, 23, 23, T6, 7T, 97 15 19
Py 8.9, 33, 35 12 12

P 14, 15, 29, 32 1 1

G 56, 58, 60, 70-72 5 8

B 1, 2, 42, 44, 84, 86, 87, 108 67 69

holo-FABP Py 21, 22, 75, T6 23 24
P;r/G 8,9, 33-35, 55, 56, 58, 60, 70, 71, 73 73 71

B 1, 44, 86, 87 37 38

TABLE 2. Portal cluster analysis: orifices observed in water exchange.
For counting all entry (Nepier) and exit (Njgape) cvents, a time window of 5
ps has been used to define the minimum period required between two consec-
utive changes of state (internal to external or external to internal). Residues
contributing at least 15 % to all events counted for a given opening are listed.

may indicate that much longer simulations are needed for adequate equilibration
of water exchange in apo-FABD.
e Most of the water exchange in holo-FABP proceeds via the gap and portal path-

ways. In contrast, apo-FABP shows more exchange through the backside portal.

In summary, portal cluster analysis confirms common assumptions about major solvent
exchange pathways and identifies an additional orifice at the backside of the protein.

3.3. Water densities. Water positions have been mapped onto a three-dimensional grid
which discretizes the space occupied by the protein molecule. Histograms of water po-
sitions are then recorded from the entire trajectory (see Figures 8 and 9). The bulk of
the so-determined water density is concentrated in the center of the protein. populating
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an area typically referred to as the actual interior protein cavity. Note, however, that
many other locations inside the protein exhibit considerable water density as well. These
additional sites of water density were only identified because the cavity was deliberately
chosen to include the entire (-barrel lined by the protein backbone. The isolated area of
water density near the loop at the bottom of the gap G, for example, corresponds to a
well-ordered water molecule (W135) known from crystal structure determinations [34].

Dynamic information has been added to the plots shown in Figures 8 and 9 by separate
analysis of successive time periods. The total density has further been divided into
contributions arising from water molecules found inside the protein for the entire MD
simulation (permanent), and those exchanging with the bulk. The latter molecules are
labeled core if they are in contact with permanent waters (OW-OW distance of 0.3 nm or
less) at any time during the simulation, and peripheral otherwise. This simple distinction
enables us to focus on water molecules exchanging between the bulk and the center of
the protein. A number of interesting conclusions can be drawn by comparing the time-
resolved evolution of water densities in apo- and holo-FABP:

apo-FABP shows an apparent contraction of permanent water density. Particularly
molecules in the backside portal region (B) migrate to the center of the cavity. At the
same time, five core water molecules are lost by expulsion primarily through the backside

apo-FABP 0-1.25ns 3.75-5ns

permanent,
permanently inside

core,

inside for some time,
hydrogen-bonded to
permanent water at least
once

peripheral, x _

inside for some time, b &

never hydrogen- il :

bonded to permanent : A -

water . 2.6 “' 2.4
v \ 4

average number of water molecules

FicurE 8. Water density inside apo-FABP plotted on a 3D-grid.
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FIGURE 9. Water density inside holo-FABP plotted on a 3D-grid.

portal and through portal area P;. The number of peripheral water molecules remains
almost constant throughout the simulation.

The much smaller number of permanent water molecules in holo-FABP appears to be
distributed over a region similar in size to that of apo-FABP. Compared to apo-FABP, a
higher percentage of the total internal water density relates to water molecules exchanging
with the bulk. No contraction or overall loss of internal water density is discernible at
any time. Quite to the contrary, a significant number of water molecules flows in from
portal area P;; and contributes to an increasing region of core water density in the center
of the protein.

Core rather than peripheral water molecules contribute the most to the loss of water
density in apo-FABP and to the gain of water density in holo-FABP. This nicely demon-
strates that a significant portion of the observed water exchange relates to exchange
between the protein center and bulk water.

It is also clear from Figures 8 and 9 that exchange through the backside portal B con-
tributes little to the central water density. For holo-FABP, all water density observed in
the vicinity of the backside portal corresponds to peripheral water which by definition has

not had any contacts with permanent water in the center of the cavity. apo-FABP also
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shows some core water density close to the backside portal which, however, appears dis-
connected from the central region. It seems unlikely that core water molecules migrating
between the two regions would not have been detected at the chosen time resolution of
0.5 ps. Contacts between core and permanent waters are thus likely from the early phase
of the simulation which still shows some permanent water density outside the central
cavity. Hence we conclude that little or no exchange between central cavity and bulk
water has occurred through the backside portal. This is probably due to a number of
hydrophobic residues (viz. Trp6, Phe2, and Phe93) effectively closing off the backside of

the [-barrel [35].

3.4. Water coordination numbers. The analysis of water coordination provides ad-
ditional information on water structure and discriminates between isolated molecules,
clusters, and the bulk (see Fig. 10).

water can easily and accurately be simulated by considering only 'remote’ exterior water

The distribution of coordination numbers in bulk

molecules which are not in contact with any protein atoms. It compares very well with
The distribu-
tion shows a maximum at N.,,=5, corresponding to tetrahedrally coordinated water

the distribution for bulk water calculated by Garcfa and Hummer [37].

which is, on average, augmented by one additional water molecule located on one of the
tetrahedron’s faces. Coordination numbers of 4-6 are very common, but the probability

vanishes quickly for lower and higher coordination numbers. In contrast, water molecules

apo-FABP holo-FABP
24 remote remote =2
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on the protein surface prefer lower coordination numbers. Consequently, the distribution
calculated for the entire set of all exterior water shows a bias towards low N e (second
row of Fig. 10).

Coordination numbers of interior water molecules are of particular interest to the
present study, and unlike those of exterior water molecules, they differ considerably be-
tween apo- and holo- FABP. While apo-FABP shows a rather smooth distribution of
coordination numbers for water molecules permanently in the protein interior, the cor-
responding distribution for holo-FABP vanishes rapidly for N, > 3. Around 10% of
the water permanently inside apo-FABP is coordinated by 4 other water molecules, two
orders of magnitude more than in holo-FABP. Low coordination numbers (0 or 1) of wa-
ter permanently in the protein interior are less common for apo- than for holo- FABP.
The distributions of coordination numbers for all interior water molecules peak at 2-3 for
apo-FABP and at 1 for holo-FABP. The most favorable coordination numbers of bulk wa-
ter, Nepora = 4 and Noporq=50, are found for 19% and 9%, respectively, of all water inside
apo-FABP, but for only 8% and 2% of all water inside holo-FABP. In summary, all these

observations indicate the formation of a water droplet in the cavity of the apo-protein.

3.5. Water interaction potentials. The geometric information provided by water den-
sities and coordination numbers may be supplemented by energetic analyzes to further
rationalize the differences in water structure and dynamics found between apo- and holo-
FABP. The water interaction potential, mapped onto the same grid as the water density,
appears to be a convenient measure of local differences in energy and will thus be analyzed
in some detail.

We define the water interaction potential as the average total interaction energy of
a water molecule located at a particular grid point. It is composed of Coulomb and

van der Waals interactions with all other molecules and includes the usual reaction field

apo-FABP holo-FABP

Protein -50.9 -56.8
Ligand - -11.8
Interior Water -41.4 -16.5
Exterior Water -1.4 -3.8
Total -93.7 -89.0

TABLE 3. Water interaction potential (kJ/mol). Averages of the interac-
tion potential experienced by all interior water molecules interacting with other
water, protein, and ligand.
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corrections. The potentials are averaged in time, and different water molecules may
contribute to the same grid point. Table 3 reports averages for water molecules of a
specific kind. Note that the tabulated values are averaged both in time and in space.

The notion of a water droplet forming in the cavity of apo-FABP is clearly supported
by the data reported in Table 3. Water molecules in the protein interior show average
interaction energies of more than -40 kJ/mol with other interior water. This amounts
to about half the total interaction energy of a single water molecule in bulk water. As
expected, internal water-water interactions are less significant for holo-FABP, but this
is in part compensated for by favorable interactions with the ligand. In addition holo-
FABP also shows slightly more attractive water-protein interactions which compensate for
the lack of water droplet formation in holo-FABP. The total water interaction potential
averages to -89 kJ/mol for holo-FABP which is only marginally (5 kJ/mol) less than for
apo-FABP.

4. DiscussioN AND CONCLUSIONS

A new computational procedure based on Delaunay triangulation has been presented
to identify internal water in proteins and to capture exchange pathways. Unlike many
other approaches previously reported in the literature [14,15, 18- 22], it does not attempt
to identify solvent accessible volumes in the protein interior. Instead it provides a means
to define a bounding surface of the protein by triangulating a set of selected protein atoms
on an auxiliary sphere. A polyhedron is obtained, and any solvent molecule inside the
polyhedron is considered to be in the protein interior. Exchange pathways and protein
orifices are identified by clustering surface triangles next to a solvent molecule that leaves
or enters the protein interior.

The triangulation algorithm is conceptually simple and uses the property of Delaunay
triangulation that the circumecircle of every triangle is empty of other sites. While straight-
forward implementation of this principle affords computationally unfavorable scaling be-
havior (O (Ny})), a priori knowledge of the number of surface triangles combined with
presorted lists of vertex pairs may be used to enhance computational efficiency signif-
icantly and eventually achieve near-linear scaling. In practice, the procedure requires
trivial amounts of computer time to define the bounding surface of the protein, to iden-
tify internal water molecules and to determine portals of exchange with bulk water.

The approach presented in this paper can be applied to any convex shaped protein or
region of a protein. It will fail for concave shapes, however, which cannot be reasonably
represented by a sphere. Application to a torus, for example, would yield a dented
ellipsoid rather than recover the torus after back transformation to the original coordinate
frame. The choice of atoms used to define the bounding surface should be tailored to



the problem at hand. It should normally not include atoms in very flexible parts of the
molecule (e.g. protein sidechains) which are not representative for the overall shape of the
molecule. In the case of FABP the [3-barrel spanned by main chain atoms provides a clear
route to distinguish between interior and exterior, and fluctuations of the barrel shape
observed along the MD trajectory should be reflected in fluctuations of the embracing
polyhedron as well. In other cases, certain (buried) main chain atoms may be regarded
as part of the interior rather than defining its bounding surface, and they should not be
selected for triangulation. In summary, the manual selection of atoms certainly requires
some judgement and it prevents full automation. But it also offers the flexibility needed
for custom-tailored solutions.

Application to 5 ns long molecular dynamics trajectories of apo- and holo- FABP
demonstrate the benefits of the approach. Protein orifices known from the crystal struc-
tures and discussed as putative pathways of exchange have been confirmed to be involved
in water exchange between the interior and exterior of the protein. An additional opening
on the backside of the protein has been identified. The internal water has been further
analyzed in terms of water densities, coordination, and interaction potentials. A number
of differences have been observed comparing apo- and holo-FABP:

First, apo-FABP experiences a continuous loss of internal water, indicating that equi-
libration has not finished within the 5 ns of simulation, and that the water content may
fall below 30 eventually. holo-FABP shows a relatively constant count of 21-22 internal
water molecules.

Second, holo-FABP experiences much more water exchange between the interior cavity
and the bulk, primarily through portal region P;; . This observation is counter-intuitive
given the smaller number of water molecules inside the cavity. A more detailed analysis
is clearly needed to explain this unexpected behavior. [23]

Third, apo-FABP displays a significant concentration of water density in the center
of the cavity. It appears to form a small water droplet with water-water interactions
accounting for about half the total interaction energy of internal water. The notion of a
water droplet is also supported by calculated coordination numbers. Water inside holo-
FABP, on the other hand, appears to benefit from interactions with the carboxylate group
of the ligand as well as slightly stronger water-protein interactions. |

In summary, the approach discussed in this paper to identify water in protein cavities
has proven to be a useful tool to study structure and dynamics of internal water and to
complement experimental information from X-ray crystallography and NMR. techniques

with theoretical analyses of MD trajectories.
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